首页> 外文OA文献 >Chemical kinetics and CFD analysis of supercharged micro-pilot ignited dual-fuel engine combustion of syngas
【2h】

Chemical kinetics and CFD analysis of supercharged micro-pilot ignited dual-fuel engine combustion of syngas

机译:增压微导燃烧双燃料发动机合成气燃烧的化学动力学和CFD分析

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A comprehensive chemical kinetics and computational fluid-dynamics (CFD) analysis were performed to evaluate the combustion of syngas derived from biomass and coke-oven solid feedstock in a micro-pilot ignited supercharged dual-fuel engine under lean conditions. The developed syngas chemical kinetics mechanism was validated by comparing ignition delay, in-cylinder pressure, temperature and laminar flame speed predictions against corresponding experimental and simulated data obtained by using the most commonly used chemical kinetics mechanisms developed by other authors. Sensitivity analysis showed that reactivity of syngas mixtures was found to be governed by H2 and CO chemistry for hydrogen concentrations lower than 50% and mostly by H2 chemistry for hydrogen concentrations higher than 50%. In the mechanism validation, particular emphasis is placed on predicting the combustion under high pressure conditions. For high hydrogen concentration in syngas under high pressure, the reactions HO2 + HO2 = H2O2 + O2 and H2O2 + H = H2 + HO2 were found to play important role in in-cylinder combustion and heat production. The rate constants for H2O2 + H = H2 + HO2 reaction showed strong sensitivity to high-pressure ignition times and has considerable uncertainty. Developed mechanism was used in CFD analysis to predict in-cylinder combustion of syngas and results were compared with experimental data. Crank angle-resolved spatial distribution of in-cylinder spray and combustion temperature was obtained. The constructed mechanism showed the closest prediction of combustion for both biomass and coke-oven syngas in a micro-pilot ignited supercharged dual-fuel engine.
机译:进行了全面的化学动力学和计算流体动力学(CFD)分析,以评估在贫油条件下微飞行员点火的增压双燃料发动机中源自生物质和焦炉固体原料的合成气的燃烧。通过将点火延迟,缸内压力,温度和层流火焰速度预测与使用其他作者开发的最常用化学动力学机制获得的相应实验数据和模拟数据进行比较,验证了已开发的合成气化学动力学机制。敏感性分析表明,对于氢气浓度低于50%的合成气混合物,其反应性受H2和CO化学影响,而对于氢气浓度高于50%的合成气混合物,其反应主要受H2化学影响。在机构验证中,特别强调预测高压条件下的燃烧。对于高压下合成气中的高氢浓度,发现反应HO2 + HO2 = H2O2 + O2和H2O2 + H = H2 + HO2在缸内燃烧和热量产生中起重要作用。 H2O2 + H = H2 + HO2反应的速率常数显示出对高压点火时间的强烈敏感性,并且具有很大的不确定性。将开发的机理用于CFD分析中,以预测合成气在缸内的燃烧,并将结果与​​实验数据进行比较。得到了缸内喷雾的曲柄角分辨空间分布和燃烧温度。构造的机理显示了在微飞行员点火的增压双燃料发动机中生物质和焦炉合成气的最接近燃烧预测。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号